
Chapter 4

Regression with neural networks

Contents
4.1 The model . 32

4.2 Near-optimal estimation rates with ReLU–DNNs . 33

4.2.1 Deep ReLU estimator . 34

4.2.2 Global convergence rate for Hölder functions . 35

4.2.3 Key ideas . 36

4.3 Proof of the global rate theorem . 37

4.3.1 Ingredient 1: smooth approximation with deep ReLU networks 37

4.3.2 Ingredient 2 : entropy and error propagation in DNNs 44

4.3.3 A generic oracle inequality for the prediction risk 45

4.4 Compositional structures: towards solving the curse of dimensionality 49

4.5 Minimax optimality and link to approximability . 54

4.1 The model

Consider observing i.i.d. pairs Z1 = (X1,Y1), . . . , Zn = (Xn ,Yn) with

Yi = f0(Xi)+εi , 1 ≤ i ≤ n, (4.1)

where Xi are [0,1]d –valued random variables (also called design points) and εi are independent stan-
dard normal N (0,1) variables, and independent of the Xi ’s, and f0 : [0,1]d →R an unknown function.

Typical statistical goals in this setting are

• estimating the unknown regression function f0 from the observations

• finding estimates that behave (near–)“optimally" with respect to some criterion (e.g. minimax)
over natural classes of parameters.

Let f̂ (·) = f̂n(Z1, . . . , Zn)(·) be an estimator of f .
The prediction risk in the setting of model (4.1) is defined as follows. Let T be a ‘synthetic’ data

point, that is a variable independent of the Xi ’s and generated from the distribution of X1. Let

R(f̂ , f0) = E
[(

f̂ (T)− f0(T)
)2

]
= E

[(
f̂ (Z1, . . . , Zn)(T)− f0(T)

)2
]

. (4.2)

32

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 33

The interpretation is as follows: from the observations Z1, . . . , Zn , one builds an estimator f̂ (Z1, . . . , Zn)(·),
and then evaluate its performance ‘on average’ for the prediction of the value of f0 at a new point T .
More explicitly, since Z1, . . . , Zn are iid with distribution PZ1 the law of Z1, and T has same law as X1,

R(f̂ , f0) =
∫

· · ·
∫ (

f̂ (z1, . . . , zn)(t)− f0(t)
)2

dP⊗n
Z1

(z1, . . . , zn)dPX1 (t).

The results of the chapter also hold for the following ‘empirical’ risk, where the L2–norm is replaced
by the empirical L2–norm:

R̂(f̂ , f0) = E [∥ f̂ − f0∥2
n] = E

[
1

n

n∑
i=1

(f̂ (Xi)− f0(Xi))2

]
, (4.3)

with f̂ (Xi) = f̂ (Xi) the value of f̂ at point Xi , that is, if one uses a fully explicit notation, f̂ (Z1, . . . , Zn)(Xi)
(note that unlike the notation could perhaps suggest, the quantity R̂(f̂ , f0) is non–random). Results
for this risk are obtained as byproduct of the proofs below.

4.2 Near-optimal estimation rates with ReLU–DNNs

Class of smooth functions. Let us first recall that a function g is β–Hölder on [0,1], with β ∈ (0,1], if

sup
x,y∈[0,1], x ̸=y

|g (x)− g (y)|
|x − y |β <∞.

Next to get appropriate ‘balls’ of Hölder functions, one bounds the ratio in the previous display by
a finite constant, say K , as well as bounds the supremum norm of g , again by K , or the sum of the
two quantities by K (without this second constraint one could add an arbitrary constant to g , while in
practice it seems reasonable to assume that g is bounded). We summarise these constraints by now
giving the general definition of a Hölder ball in dimension d that we consider in the sequel.

A Hölder ball of functions on [0,1]d is defined as, for β> 0 and K > 0,

C β([0,1]d ,K) =
{

f : [0,1]d →R :
∑

ααα:
∑r

i=1αi<β
∥∂ααα f ∥∞+ ∑

ααα: ∥ααα∥1=⌊β⌋
sup

x,y∈[0,1]d , x ̸=y

|∂ααα f (x)−∂ααα f (y)|
∥x − y∥β−⌊β⌋∞

≤ K

}
,

where ⌊β⌋ here denotes the largest integer strictly smaller than β (so that ⌊1⌋ = 0) and where a multi-
index notation is used for the partial derivative ∂ααα f = ∂α1 · · ·∂αd , with (α1, . . . ,αd) ∈Nd .

Target rate. The notion of optimal estimation rate is defined with respect to the minimax criterion

and the prediction risk. The minimax risk over a class C of functions – for instance C =C
β

d ([0,1]d ,K)
– for estimation of f in model (4.1) is defined as

RM = inf
f̂

sup
f0∈C

E [(f̂ (T)− f0)2],

where the infimum is over all possible estimators of f0 in model (4.1).

It is a standard result that when C =C
β

d ([0,1]d ,K), then as n →∞,

RM ≍ n− 2β
2β+d .

We refer to a course on nonparametric estimation for more details, where this rate is typically estab-
lished for regression and related models such as density estimation. There are several popular classes

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 34

of estimators that achieve this global rate (sometimes up to logarithmic factors), such as wavelet esti-
mators, kernel estimators, Bayesian posterior distributions etc.

One may note that the rate becomes very slow if d is large (unless perhaps for very high smooth-
ness levels; for example if one imagines that d is allowed to grow as (logn), then the rate becomes
constant). This is sometimes referred to as the curse of dimensionality. This is not a problem that
comes from the use of a particular estimation method: any method will have a slow rate in dimen-
sion d large, when applied with certain ‘un-favourable’ true regression functions. This problem rather
comes from the fact that the Hölder class becomes very massive as the dimension d increases. We
will come back to the curse of dimensionality later in the chapter, where it will be seen that if the true
function f0, although defined on the whole of Rd , has an actual small ‘effective’ dimension, the deep
network estimator can naturally adapt to this smaller dimension.

4.2.1 Deep ReLU estimator

A natural idea to find an estimator of the regression function f in model (4.1) is to do ‘maximum
likelihood’. Since the errors εi are independent normal, this is the same as ‘doing least squares’. So,
given a class F of functions to be chosen below and observations (Xi ,Yi)i from model (4.1), let us set

f̂ ERM = f̂ ERM (F) = argmin
f ∈F

1

n

n∑
i=1

(Yi − f (Xi))2. (4.4)

That is, one wants to find the ‘best fit’ to the data over the class F in terms of least squares. This
estimator is called the Empirical Risk Minimiser over the class F (in short ERM).

Let us immediately note that in practice one often does not know an exact minimiser as in (4.4)
but one can only compute some approximation of it f̃ . How ‘far’ this practical estimator is from the
ERM can be measured through

∆n(f̃ , f0) = E f0

[
1

n

n∑
i=1

(Yi − f̃ (Xi))2 − inf
f ∈F

1

n

n∑
i=1

(Yi − f (Xi))2

]
.

Within this Chapter we consider the properties of the ERM itself, i.e. we assume that we have access
to the ERM (or of a good enough approximation thereof, so that the term∆n is negligible compared to
the main convergence rate term). More discussion about the term ∆n will be given within the Inter-
polation Chapter of this course. Below we set a ∧b = min(a,b) and a ∨b = max(a,b).

Definition 4.1 (Classes of DNN networks). Consider a NN Φ with input dimension d, output dimen-
sion 1, depth L, width vector N = (Nl)1≤l≤L and activation ρ

Φ= ((A1,b1), . . . , (AL ,bL))

Define a ‘ball’ of network realisations, with parameters bounded by 1, as

F (L, N) = {
f = R(Φ), for some (A j)1≤ j≤L , (b j)1≤ j≤L , max

1≤ j≤L

(∥A j ∥∞∨|b j |∞
)≤ 1

}
.

We also set, for s > 0 a sparsity parameter,

F (L, N , s,F) =
{

f ∈F (L, N),
L∑

j=1
(∥A j ∥0 +|b j |0) ≤ s, ∥ f ∥∞ ≤ F

}
Definition 4.2 (Deep ReLU estimator). For F =F (L, N , s,F) as in Definition 4.1 for some L, N , s,F > 0,
let us set

f̂ = f̂ ReLU = argmin
f ∈F

1

n

n∑
i=1

(Yi − f (Xi))2. (4.5)

That is, f̂ is the ERM with optimisation over the set F (L, N , s,F) of s–sparse ReLU neural networks.

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 35

We assume here that the network parameters are bounded in absolute value by 1. Another pos-
itive constant could be used. The rationale behind this choice is that in practice most of the time
network parameters are initialized using bounded parameters. It is also typically observed that even
after training the parameters of the network remain quite close in range to initial parameters. From
the theoretical point of view, some approximation results are quite easily reachable if network param-
eters are allowed to be very large. But in order to be closer to practical applications where parameters
typically remain bounded, we restrict ourselves to that case, and we will see below that this does not
prevent us to obtain good inference properties.

4.2.2 Global convergence rate for Hölder functions

The following result shows that deep ReLU neural network can achieve the optimal rate ε2
n = n−2β/(2β+d)

in terms of prediction loss in regression, up to logarithmic factors, provided the parameters of the class
of networks F over which the ERM is computed (4.5) are well–chosen.

Theorem 4.3. Suppose the true unknown f0 ∈ C β([0,1]d ,K) for an arbitrary β > 0 and K > 0. Let
f̂ = f̂ ReLU be the estimator in (4.5) with F = F (L, N , s,F) the class of realisations of neural networks
with depth L, width vector N = (Nl)1≤l≤L , sparsity s and uniform bound F . Suppose F ≥ K ∨1 and a
choice of parameters as follows

log2(4β) log2(n) ≤ L ≤ n
d

2β+d , n
d

2β+d ≤ min
1≤l≤L

Nl ≤ max
1≤l≤L

Nl ≤ n2, s ≍ (logn)n
d

2β+d .

Then there exists C =C (q,d ,β,F) such that

sup
f0 ∈C β([0,1]d ,K)

R(f̂ , f0) ≤C L(logn)2n− 2β
2β+d .

Let us now discuss possible choices of L, N , s in more details. From Theorem 4.3 it appears that
the network should not be too deep, as the depth is in factor of the target rate. On the other hand,
it will be clear from the proof that a depth of at least logarithmic order allows for approximation of
smooth functions by the ReLU network realisation at a polynomial rate in n−1 (see e.g. Lemmas 4.8
and 4.9). So it seems natural to choose L ≍ logn. The widths of the network, on the other hand, can be
chosen to be polynomial in n, for instance one can take Nl ≍ n (the upper–bound n2 can be replaced
by any power of n). Finally, the perhaps most important parameter in terms of sensibility of the rate
is the sparsity s: it should be finely tuned in terms of the true regularity β of f0 as n1/(2β+d) (up to a
log factor). This parameter plays a similar role as e.g. the ‘bandwidth’ parameter of a kernel estimator:
note that in fact the choice is similar to the one of an optimal bandwidth for kernel regression.

Corollary 4.4. Under the same setting as Theorem 4.3, if one optimises over networks with depth L ≍
logn, all widths Nl ≍ n and sparsity s ≍ (logn)n

1
2β+1 , then the ERM f̂ in (4.5) verifies

sup
f0 ∈C β([0,1]d ,K)

R(f̂ , f0)≲ (logn)3n− 2β
2β+d .

Note that statistically, the previous results are still ‘non-adaptive’, that is, in order to use the previ-
ous parameters one needs to know the regularity of f0, which is rarely the case in practice. One may
envision coupling the ERM with one of the adaptation methods from the standard nonparametrics
toolbox, for instance a penalisation method. Alternatively, one could use a Bayesian method (instead
of the ERM), for which adaptation (in L2 losses) is often relatively straightforward to obtain.

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 36

Let us now underline remarkable consequences of these results. We have seen in Chapter 1 that
deep ReLU networks realisations are Lipschitz functions, and it has been seen in Chapter 2 that deep
ReLU networks have good approximation properties over the class of Lispchitz functions.

• Smoothness. We see that deep ReLU empirical risk minimisers can attain (up to a poly-log fac-
tor) the optimal minimax rate for Hölder classes for any smoothness parameter β> 0, not only
regularities between 0 and 1, as would be the case for regular histogram estimators, or between 0
and 2 as would be the case for classical piecewise affine ‘local polynomial’ estimators. The flex-
ibility of deep ReLU networks comes from the compositional structure: with a small number
of compositions, it enables to estimate quickly smooth functions, although the overall resulting
realisation is still piecewise constant.

• adaptation to hidden structures. The convergence rate obtained in Theorem 4.3 is only an
upper-bound, which can be quite pessimistic; it turns out that in many cases, the actual rate
attained by the deep ReLU estimator is much faster, at least if the ‘intrinsic’ dimensionality of
the regression function is smaller than the ambient space dimensionality d . This will be studied
in Section 4.4.

• weights all between 0 and 1. The optimisation set F for the network parameters assumes bounded
weights, between 0 and 1: it is interesting to see that a near-optimal estimation rate can be
achieved without taking weights possibly growing with the sample size.

4.2.3 Key ideas

The proof of Theorem 4.3 is based on two important sub-results. The first is of deterministic nature
and deals with approximation of smooth functions through ReLU DNNs.

Theorem 4.5 (Approximation of smooth functions by DNNs). Let f ∈ C
β

d ([0,1]d ,K) be a function of
regularity β> 0. Let m,N ≥ 1 be two integers. There exists a network, withΛ := 6(d +⌈β⌉)N ,

f̃ ∈F (L, (d ,Λ, . . . ,Λ,1), s,∞)

with depth and sparsity verifying, for c0,C0 depending on d ,β only,

L =C0m, s ≤ c0mN ,

such that, for c1,c2,N0 depending on d ,β,K only, and all N ≥N0,

∥ f̃ − f ∥∞ ≤ c1
N

4m + c2N
− β

d .

The second result is a general oracle inequality that is valid for any empirical risk minimiser. We
apply it below to the DNN estimator f̂ in (4.5).

Theorem 4.6 (Lemma 4 in [SH20b]). Let F be a class of functions from [0,1]d to [−F,F] (for some F ≥ 1)
and f̂ be the empirical risk minimizer over this class in the regression model (4.1), that is,

f̂ ∈ argmin
f ∈F

n−1
n∑

i=1
(Yi − f (Xi))2.

Then we have for any f0 : [0,1]d → [−F,F], for all δ,ε> 0,

E
[
(f̂ (T)− f0(T))2]≤ (1+ε)2

[
inf
f ∈F

E
[
(f (T)− f0(T))2]+F 2 18logNn(δ)+72

nε
+32δF

]
,

for which Nn(δ) :=N (δ,F ,∥ ·∥∞) and assuming 3 ≤Nn(δ) ≤ en .

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 37

The upper-bound for the prediction risk in Theorem 4.6 can be interpreted as displaying a bias–
variance trade–off. The first term corresponds to bias: it measures the best possible approximation
from the given candidate class F . The term displaying the entropy can be interpreted as complexity
or ‘variance’, measuring the complexity of the class F over which the ERM is taken.

Both results will turn useful again when analysing different assumptions on the function class the
true f0 belongs to in Section 4.4.

4.3 Proof of the global rate theorem

Let us first see how Theorem 4.3 follows by combining Theorems 4.5 and 4.6. The later oracle inequal-
ity also needs a quantitative bound on the entropy, which is provided in Lemma 4.13 below.

One applies Theorem 4.6 with F = F (L, N , s,F) the class of DNN realisations from Theorem 4.3
with parameters as specified in the statement. One can bound

inf
f ∈F

E
[
(f (T)− f0(T))2]≤ inf

f ∈F
∥ f − f0∥2

∞.

Setting δ= 1/n,ε= 1 and using Theorem 4.6,

E
[
(f̂ (T)− f0(T))2]≲ inf

f ∈F
∥ f − f0∥2

∞+F 2 18logNn(1/n)+72

n
+32

F

n
.

Using Lemma 4.13 and recalling V ≤ (2max Nl)L ≤ (2n2)L via (4.15) and the conditions on Nl s,

log N(δ,F (L, N , s),∥ ·∥∞) ≤ (s +1)log

(
2LV 2

δ

)
≤ 2s[log(2Ln)+2L log(2n2)],

which is bounded by C sL logn. Now to control the term with the infimum above, we apply Theorem

4.5 with N ≍ n
d

2s+d , m = ⌊log2 n⌋. There exists a network in F (L, (d ,Λ, . . . ,Λ,1), s,∞), with L ≍ m ≍
logn and s ≲mN ≍ (logn)n

d
2s+d such that its realisation f̃ verifies

∥ f̃ − f0∥∞ ≲
N

4m +N − β
d ≲ n− β

2β+d .

Putting the previous bounds together leads to

E
[
(f̂ (T)− f0(T))2]≲ n− 2β

2β+d + sL logn

n
+ 1

n
≲ L(logn)2n− 2β

2β+d ,

which concludes the proof of Theorem 4.3.

4.3.1 Ingredient 1: smooth approximation with deep ReLU networks

Let us now prove Theorem 4.5. The general idea is as follows: there are two main steps. The first
is not specific to DNNs and is that any β–Hölder function can be well–approximated locally, using
Taylor expansions, by a polynomial of order ⌊β⌋: one can approximate f0 by a piecewise polynomial
function, with a quality of approximation that depends on β. The second idea, where the choice of
activation function σ comes in, is that it is possible to approximate quickly, in one dimension, the
monomial (x, y) → x y using a ReLU network. From there one then shows that ReLU networks suitably
approximate products x → x1 · · ·xd as well as more general monomials. From monomials one can
easily approximate polynomials by combining networks, and now one can connect to the first part of

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 38

the argument, by constructing a network that approximates the piecewise polynomial function men-
tioned above, that itself approximates f0.

Approximation, Step 1. In order to approximate a function f ∈ C
β

d ([0,1]d ,K), we define a grid of

[0,1]d as, for M ≥ 1 an integer to be chosen below,

D(M) =
{

xl =
(

l j

M

)
j=1,...,d

, l = (l1, . . . , ld) ∈ {0,1, . . . , M }d

}
.

Around a given point aaa ∈ [0,1]d , the function f can be approximated by its Taylor polynomial: in
dimension d its expression is, for aaa = (a1, . . . , ad), denoting α! = α1 · · ·αd , and uα = uα1

1 · · ·uαd
d for

u ∈Rd ,

Pβ
aaa f (x) := ∑

0≤|α|<β
(∂α f)(aaa)

(x −aaa)α

α!
. (4.6)

Taylor’s expansion with Lagrange remainder gives, for any f ∈C
β

d ([0,1]d ,K)

| f (x)−Pβ
aaa f (x)| ≤ K ∥x −aaa∥β∞. (4.7)

Let us check (4.7). By Taylor’s formula there exists ξ ∈ [0,1] such that

f (x) = ∑
0≤|α|<β−1

(∂α f)(aaa)
(x −aaa)α

α!
+ ∑
β−1≤|α|<β

(∂α f) (aaa +ξ(x −aaa))
(x −aaa)α

α!
,

so substracting (4.6) and using the triangle inequality gives

| f (x)−Pβ
aaa f (x)| ≤ ∑

β−1≤|α|<β

∣∣(∂α f) (aaa +ξ(x −aaa))− (∂α f)(aaa
∣∣ ∥x −aaa∥|α|∞

α!

≤ K |ξ|∥x −aaa∥β−⌊β⌋∞
∑

β−1≤|α|<β

1

α!
∥x −aaa∥⌊β⌋∞ ≤ K ∥x −aaa∥β∞,

using the fact that f is β–Hölder.

Define, again for any f ∈C
β

d ([0,1]d ,K) and x = (x1, . . . , xd),

Pβ f (x) := ∑
xl∈D(M)

(Pβ
xl

f)(x)
d∏

j=1
(1−M |x j −xl , j |)+. (4.8)

Inside the hypercubes defined by consecutive gridpoints, Pβ f (x) is a polynomial, so the overall func-
tion Pβ f is piecewise–polynomial.

Lemma 4.7 (Approximation of f by a piecewise–polynomial function). For any f ∈C
β

d ([0,1]d ,K), de-

fine Pβ f as in (4.8). Then
∥ f −Pβ f ∥∞ ≤ K M−β.

Proof. Observe the following sum-product formula (expand the middle term)

∑
xl=(l1/M ,...,ld /M)

d∏
j=1

(1−M |x j −xl , j |)+ =
d∏

j=1

M∑
l=0

(1−M |x j − l /M |)+ = 1.

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 39

Indeed, if l∗ = ⌊M x j ⌋, then (1−M |x j − l /M |)+ is possibly non-zero only for j = l∗, l∗+1 and

(1−M |x j − l∗/M |)++ (1−M |x j − (l∗+1)/M |)+ = 1−M(x j − l∗/M)+1−M((l∗+1)/M −x j) = 1.

One notes that the terms of the sum in the definition (4.8) are nonzero only at a given x for xl such
that ∥x−xl∥∞ ≤ 1/M – the corners of the hypercube of radius 1/M the point x belongs to –, otherwise
the product in (4.8) is zero. Denoting by Hxl (x) =∏d

j=1 (1−M |x j −xl , j |)+,∣∣∣ f (x)−Pβ f (x)
∣∣∣≤∑

xl

| f (x)− (Pβ
xl

f)(x)|Hxl (x)

≤ max
∥x−xl ∥∞≤1/M

| f (x)− (Pβ
xl

f)(x)| ∑
∥x−xl ∥∞≤1/M

Hxl (x)

≤ K M−β,

using Taylor’s approximation (4.7), which concludes the proof.

Approximation, Step 2 (specific to ReLU activation).

Lemma 4.8 (Approximating x(1−x) with piecewise affine functions). Let T 1 : [0,1] → [0,1/4] and more
generally T k : [0,2−2(k−1)] → [0,2−2k],k ≥ 1, be the maps

T 1(x) = x

2
∧

(
1

2
− x

2

)
, T k (x) = x

2
∧

(
1

22k−1
− x

2

)
.

Let us set Rk := T k ◦T k−1 ◦ · · · ◦T 1, for k ≥ 1. Then for any m ≥ 1,∣∣∣∣∣x(1−x)−
m∑

k=1
Rk (x)

∣∣∣∣∣≤ 4−m−1.

Proof. Let C (x) = x(1−x). The key is to observe the ‘fractal’-like property

C (x) = T 1(x)+ 1

4
C (4T 1(x)).

This can be seen on a picture or just checking algebraically. Next note that by definition T 2(y) =
1
4 T 1(4y) and more generally T k+1(y) = 1

4k T 1(4k y). By recursion one immediately obtains

C (x) = T 1(x)+T 2 ◦T 1(x)+·· ·+T k ◦ · · · ◦T 1(x)+ 1

4k
C (4k T k ◦ · · · ◦T 1(x)).

The result follows by applying this with k = m and noting that C (·) is bounded by 1/4 on [0,1].

Lemma 4.9 (Approximating (x, y) → x y by a DNN). Let m ≥ 1. There exists a DNN, Multm(x, y), with

Multm ∈F (m +4,(2,6, · · · ,6,2,2,2,1)),

such that for any x, y ∈ [0,1] it holds Multm(x, y) ∈ [0,1], Multm(0, y) = Multm(x,0) = 0 and∣∣Multm(x, y)−x y
∣∣≤ 4−m .

Proof. In order to approximate (x, y) → x y , we use a ‘polarisation’ formula. The most classical polar-
isation writes x y in terms of squares as x y = (x + y)2/4− (x − y)2/4. Here we rather use, since from
Lemma 4.8 we have access to x(1−x) =: C (x), the formula

x y =C

(
x − y +1

2

)
−C

(x + y

2

)
+ x + y

2
− 1

4
,

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 40

(verify it!) where we know how to approximate every element on the right hand–side by affine func-
tions. Denoting Cm :=∑m

k=1 Rk , Lemma 4.9 gives ∥Cm −C∥∞ ≤ 4−m−1. Let us further denote

Zm(x, y) :=
(
Cm

(
x − y +1

2

)
+ x + y

2
−Cm

(x + y

2

)
− 1

4

)
+
∧1. (4.9)

Then, since the map (u, v) →∆(u, v) := (u − v)+∧1 is 1–Lipschitz, we have

|Zm(x, y)−x y | ≤ 2∥C −Cm∥∞ ≤ 4−m/2.

Let us set Multm(x, y) := Zm(x, y) and see how to practically implement this into a ReLU network.

Basic networks for T+,T k− ,T k ,∆. Recall T k (x) = (x/2)∧ (21−2k − x/2). Since a ∧b = a+− (a −b)+ if
a ≥ 0,

T k (x) = T+(x)−T k
− (x), T+(x) := (x/2)+, T k

− (x) := (x −21−2k)+.

So, the functions T+,T− and T k for k ≥ 1 can all be written with a shallow network using only one
neuron, as shown in Figure 4.1. Finally, using that ∆(u, v) = 1∧ (u − v)+ = 1− (1− (u − v)+)+, one can
easily encode ∆ using a ReLU network with two hidden layers.

Figure 4.1: DNN representation of basic T functions encoding (on top of arrows: matrix coefficients;
below arrows in green: non-zero translations; circle: neuron pass)

Combining basic networks to compute Zm(x, y). The basic networks can then be combined ac-
cording to the network depicted in Figure 4.2, which taking as input (T+(x),h(x),T−(x)), computes
Cm(x)+h(x), where h : [0,1] → [0,∞) is a given function taking nonnegative values. Note that the
neuron pass on the middle row in Figure 4.2 is just the identity, as the input is always nonnegative.

It is then enough to run two sub-networks in parallel: a first computes

(x, y) →
(
T+

(
x − y +1

2

)
,

x + y

2
,T−

(
x − y +1

2

))
and applies the network Nm from Figure 4.2, thus computing Cm

(
x−y+1

2

)
+ x+y

2 . A second sub-network

does the same after first computing

(x, y) →
(
T+

(x − y

2

)
,

1

4
,T−

(x + y

2

))
,

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 41

Figure 4.2: Encoding approximation of h(x)+C (x), with C (x) = x(1− x) with ReLU (on top of arrows:
matrix coefficients; below arrows in green: non-zero translations; formulas display computed quan-
tity just after neuron pass, except last one for final output, for which we do not apply a neuron)

thus computing Cm
(x+y

2

)+ 1
4 . Finally applying ∆ to the two sub-results provides a computation of

Zm(x, y) as required.
To conclude the proof, one checks that the number of parameters is as required, and that the

function Multm(x, y) is indeed 0 for inputs of the form (x,0) and (0, y) (this is checked on successive
functions R1,R2, . . . ,Rm and left as an exercise).

More generally, the next lemma shows, first, how to construct a DNN approximating the prod-
uct x1 · · ·xr . Second, one can similarly approximate any monomial, that is a polynomial of the form
xα1

1 · · ·xαr
r , and by synchronising the resulting networks, all monomials up to a certain degree γ simul-

taneously. Let us write, for f a RNL –valued function, ∥ f ∥∞ as a shorthand for ∥| f |∞∥∞.

Lemma 4.10 (Approximating products and monomials by a DNN). Let m,r ≥ 1 two integers. There
exists a DNN, Multr

m : [0,1]r → [0,1], with depth L ≲ m logr and maximum width 6r such that for
x = (x1, . . . , xr) ∈ [0,1]r , ∣∣∣∣∣Multr

m(x)−
r∏

i=1
xi

∣∣∣∣∣≤ r 24−m ,

and Multr
m(x) = 0 if one of the xi ’s is zero. More generally, let m,γ,d ≥ 1 three integers. Let Cd ,γ denote

the number of monomials over d variables with degree |α| < γ. There exists a DNN, Mond
m,γ : [0,1]d →

[0,1]Cd ,γ with depth L ≲ m logγ and maximum width 12γCd ,γ, that approximates all monomials of
degree less than γ simultaneously∥∥∥Mond

m,γ(x)− (
xα

)
|α|<γ

∥∥∥∞ ≤ γ24−m .

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 42

Remark. The number Cd ,γ of monomials of degree less than γ is less than (γ+1)d .

Proof. We start by the network Multr
m and notice that one can always assume that r is a power of 2. If

this is not the case, one just artificially extends the product by multiplying by a number of 1’s. So, let us
set r = 2q . An approximation to the product of xi ’s is computed recursively as follows: first compute

(Multm(x1, x2),Multm(x3, x4), . . . ,Multm(xr−1, xr)) ,

which gives 2q−1 terms left, and then repeat the same operation until there is only one term left, with
an output that we define as Multr

m(x). By Lemma 4.9 and the triangle inequality, for a,b,c,d ∈ [0,1],

|Multm(a,b)− cd | ≤ |Multm(a,b)−ab|+ |(a − c)b + (b −d)c| ≤ 4−m +|a − c|+ |b −d |.

An immediate recursion then gives, as announced,∣∣Multr
m(x)− (x1 · · ·xr)

∣∣≤ 3q−14−m ≤ 4q 4−m = r 24−m .

Now turning to the network computing all monomials, one notes that for a degree of at most 1, one can
just use a shallow network, with the later computing exactly a constant or a linear function (recall the
identity can be obtained as such a network). More generally, one uses the same argument as for Multr

m
to compute a given monomial xα1

1 · · ·xαr
r , up to an error, recalling |α| = ∑r

i=1αi < γ, bounded from
above by γ24−m . In a last step, we stack all obtained networks in parallel (using depth synchronisation
to have the same given depth for all networks, meaning we take the largest depth).

End of the proof of Theorem 4.5. Now that we have constructed a network computing all monomi-
als, one can go back to the local polynomial (4.8) approximating f , namely

Pβ f (x) := ∑
xl∈D(M)

(Pβ
xl

f)(x)
d∏

j=1
(1−M |x j −xl , j |)+.

Let us define M as the largest integer such that

(M +1)d ≤N . (4.10)

To conclude the proof, one constructs the final network in three steps.

Step (i), hat function network. One constructs a network Hatd approximating the hat functions∏d
j=1 (M−1 −|x j −xl , j |)+ (note the specific normalisation, in order to have an easy construction with

weights bounded by 1) simultaneously for all xℓ on the grid D(M).
Since |x| = x++ (−x)+, we have the formula, for a,b,c in [0,1],

(a −|b − c|)+ = (a − (b − c)+− (c −b)+)+.

One can use a first hidden layer with width 2d(M+1) to compute all functions (x j −ℓ/M)+ and (ℓ/M−
x j)+, and a second hidden layer to compute all functions (1/M −|x j −ℓ/M |)+ using the formula in the
last display, using this time a width d(M +1). All these functions take values in [0,1].

If d = 1 we are done (the network computes the function exactly). For d > 1, one uses the networks
Multd

m from Lemma 4.10 to compute the desired products. Each one of these products requires (recall-
ing Multd

m has width less than C d , depth at most C m logd) at most C md 2 logd nonzero parameters.
We have of (M +1)d of these products in parallel which gives sparsity C ′m(M +1)d d 2 logd ≲ mN in

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 43

total (adding also the non-zero parameters of the first two layers from the previous paragraph, which
require only C d(M +1) non-zero weights). The resulting network verifies

∣∣∣Hatd (x)−
(d∏

j=1
(M−1 −|x j −xl , j |)+

)
xl∈D(M)

∣∣∣∞ ≤ d 24−m . (4.11)

Step (ii), networks Q1 and Q2. We now build two networks verifying the following. For B = 3K ed ,

we have Q1(x) ∈ [0,1](M+1)d
and

∣∣∣Q1(x)−
(Pβ

xl
f (x)

B
+ 1

2

)
xl∈D(M)

∣∣∣≤β24−m . (4.12)

The role of the constant B is to keep the approximated quantity in the last display between 0 and 1,
thanks to Lemma 4.11. Next, the network Q2 verifies

∣∣∣Q2(x)− ∑
xl∈D(M)

(Pβ
xl

f (x)

B
+ 1

2

) d∏
j=1

(M−1 −|x j −xl , j |)+
∣∣∣≤ (1+d 2 +β2)4d−m . (4.13)

The construction of Q1 is immediate by forming the weighted sum of the joint network of monomials
Mond

m,γ for every point xl ∈ D(M) in parallel (thus getting an output dimension (M +1)d), noting with
Lemma 4.11 that the weights are smaller than 1 thanks to the division by B . By Lemma 4.10, the depth
of Q1 is bounded by C m. The sparsity of Q1 is bounded by that of Mond

m,γ plus Cd ,β(M +1)d , that is by

C m +C (M +1)d ≤C (m +N), where C depends only on d ,β.
To build Q2, one proceeds on two steps: first, one stacks in parallel the networks Q1 and the Hatd

network (which simultaneously outputs all hat functions). Next, one notes that both Q1 and Hatd have
outputs indexed by xl . One pairs these outputs two-by-two and applies to them the Multm network.
There are (M+1)d ≤N pairs, and recall that Multm has of order m active (nonzero) parameters (depth
m and constant width). So this part of the network has sparsity at most mN . Finally, one adds all re-
sults using a final layer, leading to the term approximating Q2 in (4.13), except that hat functions and
local polynomial are replaced by their approximations. Combining (4.11) with (4.12) now gives (4.13).
In passing we note that building C2 uses at most C mN nonzero parameters, with depth of order m.

Step (iii), shifting and rescaling the entries in (4.13). Finally, we build a network Q3 that verifies

∣∣∣Q3(x)− ∑
xl∈D(M)

Pβ
xl

f (x)
d∏

j=1
(1−M |x j −xl , j |)+

∣∣∣≤ (2K +1)(1+d 2 +β2)(2e)d N 4−m . (4.14)

The construction of Q3 is based on shifting/rescaling Q2. One needs to pay attention that we wish to
keep weights between 0 and 1. Note that to compute Q3 by putting Q2 ‘on the right scale’, it suffices
to build a network computing the scaling x → B M r x =: K x. To do so, one may use a network with a
weight matrix having all entries equal to 1 and zero shift vectors, which uses CK ≲N active parame-
ters. The overall network Q3 thus keeps up to a constant the same sparsity (at most C mN) and depth
as Q2. The approximation (4.14) directly follows from (4.13).

Putting (4.14) together with Lemma 4.7, one obtains that the network Q3 verifies

∥ f −Q3∥∞ ≲N 4−m +M−β≲N 4−m +N −β/d ,

with a sparsity C mN (we omit the precise dependence of the constants on K ,d given in the statement,
which can easily be tracked in the above arguments) which concludes the proof of Theorem 4.5.

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 44

Lemma 4.11. Let Pβ
α f the polynomial defined in (4.6). Writing Pβ

α f (x) = ∑
0≤|γ|≤β cγxγ, for any f ∈

C
β

d ([0,1]d ,K),

sup
x∈[0,1]d

∣∣∣(Pβ
α f)(x)

∣∣∣≤ ∑
0≤|γ|≤β

|cγ| ≤ K ed .

Proof. Left as an exercise, see [SH20a], page 6.

4.3.2 Ingredient 2 : entropy and error propagation in DNNs

Let ρ be the ReLU activation, or more generally a 1–Lip function with ρ(0) = 0. Considering the class
of functions F (L, N , s), let us denote

V =V (N) :=
L∏

l=0
(Nl +1). (4.15)

Since ρ is fixed throughout, we write R(W) for R(Φ). The next lemma quantifies how much small
errors in network parameters propagate into a global error for the network realisation. It is a restate-
ment of Lemma 3.9

Lemma 4.12. Suppose f = R(W) and f ∗ = R(W ∗) belong to F (L, N) with W = (Ak ,bk)k=1,...,L and
W ∗ = (A∗

k ,b∗
k)k=1,...,L . Suppose that individual entries of Ak ’s and bk ’s are at most ε > 0 away from the

corresponding entries of A∗
k and b∗

k . Then for V as in (4.15),

∥ f − f ∗∥∞ ≤ εLV.

Proof. Recall f = TL ◦ρ ◦ · · · ◦ρ ◦T1 with Tk (x) = Ak x +bk and define, for k = 1, . . . ,L,

Bk f = ρ ◦Tk ◦ · · · ◦ρ ◦T1,

Ek f = TL ◦ρ ◦ · · · ◦Tk+1 ◦ρ,

and set EL f = B0 f = Id. We first prove two basic facts about Bk f ,Ek f .

Fact 1. If f ∈F (L, N), then |(Bk f)(x)|∞ ≤∏k
l=1(Nl−1 +1) for x ∈ [0,1]d .

Let us check first that |(ρ ◦Ti)(y)|∞ ≤ Ni−1|y |∞+ 1 for any integer i . Indeed, |ρ(y)|∞ ≤ |y |∞ and
|Tk y |∞ ≤ |Ak y |∞+|bk |∞ ≤ Nk−1|y |∞+1, using ∥Ak∥∞ ≤ 1, |bk |∞ ≤ 1. In particular, if |y |∞ ≥ 1 we have
|(ρ ◦Ti)(y)|∞ ≤ (Ni−1 +1)|y |∞ for any i .

The result follows by recursion: for i = 1 we get |(ρ◦T1)(x)|∞ ≤ N0|x|∞+1 ≤ N0+1. Since N0+1 ≥ 1
it suffices feeds this bound into the previous inequality in terms of y .

Fact 2. The map x → (Ek f)(x) isΛk –Lipschitz, withΛk ≤∏L
l=k+1 Nl−1.

The composition of an L1–Lip by an L2–Lip function is an L1L2–Lip function. By definition ρ is
1–Lip, while Ti is Ni−1–Lip for any i , from which the fact follows.

Now let us write the difference f − f ∗ as the telescopic sum

f (x)− f ∗(x) =
L∑

k=1

[
(Ek f)◦Tk ◦ (Bk−1 f ∗)(x)− (Ek f)◦T ∗

k ◦ (Bk−1 f ∗)(x)
]

.

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 45

Combining the triangle inequality with Fact 2 above,

| f (x)− f ∗(x)| ≤
L∑

k=1
Λk

∣∣(Tk −T ∗
k)◦ (Bk−1 f ∗)(x)

∣∣∞
≤

L∑
k=1

Λk
[∥Ak − A∗

k∥∞|(Bk−1 f ∗)(x)|1 +|bk −b∗
k |∞

]
≤

L∑
k=1

Λk
[
εNk−1|(Bk−1 f ∗)(x)|∞+ε] .

The term under brackets in the last display is at most, using Fact 1,

εNk−1

k−1∏
l=1

(Nl−1 +1)+1 ≤ ε
k∏

l=1
(Nl−1 +1).

One deduces the announced result

| f (x)− f ∗(x)| ≤ ε
L∑

k=1

L∏
l=1

(Nl−1 +1) ≤ εLV.

The previous lemma allows for a “quantisation" of the set of neural network realisations: in the
next result we explicitly construct a finite set of functions (themselves NNs) that cover it.

Lemma 4.13. For V as in (4.15) and any δ> 0,

log N(δ,F (L, N , s),∥ ·∥∞) ≤ (s +1)log

(
2LV 2

δ

)
.

In particular if L ≲ logn and Nl ≤ n for any integer l , we have

log N(δ,F (L, N , s),∥ ·∥∞)≲ s
[
(logn)2 + log(1/δ)

]
.

The proof has been given in Chapter 3.

4.3.3 A generic oracle inequality for the prediction risk

Let us now prove Theorem 4.6. It is helpful to relate the prediction risk R(f̂ , f0) = E
[
(f̂ (X)− f0(X))2

]
to the empirical risk (4.3). The proof will be complete once we show

R(f̂ , f0) ≤ (1+ε)R̂(f̂ , f0)+ 1+ε
ε2 3

F 2

n
logNn + (1+ε)δ

F

n
, (4.16)

as well as the following direct bound on the empirical risk, for F ≥ 1,

R̂(f̂ , f0) ≤ (1+ε)

{
inf
f ∈F

R(f , f0)+3
1+ε
ε

F 2

n
logNn +Fδ

}
. (4.17)

As follows from the proofs below, the upper-bound (4.16) of the prediction risk by the ‘empirical’ risk
holds for any estimator f̂ , not necessarily the ERM. The bound (4.17) uses crucially that f̂ is the ERM.

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 46

Proof of (4.16). (a) Let us cover F by N := Nn balls of radius δ and centers f1, . . . , fN . One may
assume ∥ fi∥∞ ≤ F (otherwise consider balls centered at f̄i = (fi ∧F)∨ (−F) instead).

Let j∗ be a random integer such that ∥ f̂ − f j∗∥∞ ≤ δ. For ∆= f̂ − f j∗ (so ∥∆∥∞ ≤ δ), let us write

f̂ − f0 = (f̂ − f j∗)+ f j∗ − f0 =∆+ f j∗ − f0,

(b) In order to more easily compare the risks, let us note that the prediction risk may be written

R(f̂ , f0) = E

[
1

n

n∑
i=1

(f̂ − f0)2(Ti)

]
,

where Ti are iid variables with law L (Xi) =L (X1) (recall the Xi are iid). One may now write

R(f̂ , f0)− R̂(f̂ , f0) = E

[
1

n

n∑
i=1

(f j∗ − f0)2(Ti)− (f j∗ − f0)2(Xi)

]
+R1,

where the remainder term R1 verifies |R1| ≤ 2δ2 +2×4δF ≤ 10δF for small δ, which is obtained by
expanding the squares and using Cauchy–Schwarz’ inequality. Deduce

|R(f̂ , f0)− R̂(f̂ , f0)| ≤ E

∣∣∣∣∣ 1

n

n∑
i=1

g j∗ (Xi ,Ti)

∣∣∣∣∣+10δF,

where we have set, for any integer j ≤Nn ,

g j (Xi ,Ti) := (f j − f0)2(Ti)− (f j − f0)2(Xi).

(c) Let us set, for j = 1, . . . , N , and a ∨b = max(a,b),

r 2
j =

logNn

n
∨ ET [(f j − f0)2(T)],

where ET means that one takes the expectation with respect to T (only). Let us further set

U 2 := ET [(f̂ − f)2(T)], T := max
j

∣∣∣∣∣ n∑
i=1

g j (Xi ,Ti)

r j F

∣∣∣∣∣ .

Since T is independent of (Xi ,Yi)i , one has ET [(f j − f0)2(T)] = ET [(f j − f0)2(T) | (Xi ,Yi)i], which allows
to define r j∗ as r j with j replaced by the (random) quantity j∗. Namely,

r 2
j∗ =

logNn

n
∨ ET [(f j∗ − f0)2(T)],

where the last display is random (via j∗). One may bound, using (a +b)2 ≤ 2a2 +2b2,

r 2
j∗ ≤

logNn

n
+2ET [(f j∗ − f̂)2(T)]+2U 2 ≤ logNn

n
+2δ2 +2U 2,

using that f j∗ is uniformly at most δ away from f0. Then∣∣∣∣∣ n∑
i=1

g j∗ (Xi ,Ti)

∣∣∣∣∣=
∣∣∣∣∣ n∑
i=1

g j∗ (Xi ,Ti)

r j∗F

∣∣∣∣∣r j∗F ≤ max
j

∣∣∣∣∣ n∑
i=1

g j (Xi ,Ti)

r j F

∣∣∣∣∣r j∗F =T r j∗F.

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 47

Combining with the above bound on r j∗ and since by definition of the prediction risk E [U 2] = R(f̂ , f0),∣∣∣∣∣ n∑
i=1

g j∗ (Xi ,Ti)

∣∣∣∣∣/F ≤ E

T ·
√

logNn

n
+2δ2 +2U 2

≤p
2E [T ·U]+


√

logNn

n
+p

2δ

E [T]

≤
√

2E [T 2]
√

R(f̂ , f0)+


√
logNn

n
+p

2δ

E [T].

(d) Let us now provide bounds for E [T],E [T 2]. We start by deriving a deviation bound P [T > t]
for t > 0 to be chosen later. A union bound gives, setting Zi j := g j (Xi ,Ti)/(r j F),

P [T > t] ≤
Nn∑
j=1

P

[∣∣∣∣∣ n∑
i=1

Zi j

∣∣∣∣∣≥ t

]
.

The variables Zi j are centered and bounded in absolute value by [(2F)2 + (2F)2]/(r j F) ≤ 8F /r j =: M j .
Also, using the definition of r j ,

Var[Zi j] ≤ 2

r 2
j F 2

E [(f j − f0)(X1)4] ≤ 2(2F)2

r 2
j F 2

E [(f j − f0)(X1)2] ≤ 8 =: vi j .

An application of Bernstein’s inequality to the independent variables Zi j gives

P [T > t] ≤
Nn∑
j=1

2exp

(
− t 2

2M j t/3+2
∑n

i=1 vi j

)
≤ 2Nn exp

− t 2

16F t
3r j

+16n

 .

Using that r j ≥
√

logNn/n by definition and choosing t ≥ t1 := CF
√

n logNn for some large enough
CF =C (F) leads to

P [T > t] ≤ 2Nn exp

−C t

√
logNn

n

 .

From this one easily sees that T is of order
√

n logNn . More precisely, using the formulas ET =∫ ∞
0 P [T ≥ t]d t and ET 2 = ∫ ∞

0 P [T 2 ≥ t]d t , one obtains (check it as an exercise)

ET ≲
√

n logNn , E [T 2]≲ n logNn .

(e) Combining the points (b), (c), (d) above leads to

|R(f̂ , f0)︸ ︷︷ ︸
a

− R̂n(f̂ , f0)︸ ︷︷ ︸
b

| ≤ F

n

√
2n logNn︸ ︷︷ ︸

2c

√
R(f̂ , f0)︸ ︷︷ ︸p

a

+ F

n


√

logNn

n
+p

2δ

√
n logNn +10δF

︸ ︷︷ ︸
d

.

Inequality (4.16) is obtained upon noting the following: for reals b,c,d and a > 0 such that |a −b| ≤
2
p

ac +d , for any ε> 0 it holds

a ≤ (1+ε)(b +d)+ (1+ε)2

ε
c2,

obtained by using the inequality
p

ac ≤ ε
1+εa + 1+ε

ε c2 (itself a variant of ac ≤ (a2 + c2)/2).

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 48

Proof of (4.17). In the sequel we write Y to mean the vector of oberved Yi ’s, and in slight abuse
of notation also interpret it as the function that takes values Yi ’s at Xi ’s (so as to evaluate it under the
empirical norm ∥ ·∥n). For any f ∈F , using the definition of the ERM,

∥ f̂ − f0∥2
n = ∥ f̂ −Y ∥2

n +∥Y − f0∥2
n +2〈Y − f0, f̂ −Y 〉n

≤ ∥ f −Y ∥2
n +∥Y − f0∥2

n +2〈Y − f0, f̂ −Y 〉n ,

where 〈·, ·〉n is the inner–product associated to the empirical norm. Now using the definition of the
model, Y = f0 +ε, so that

∥ f −Y ∥2
n +∥Y − f0∥2

n +2〈Y − f0, f̂ −Y 〉n = ∥ f − f0∥2
n −2〈 f − f0,ε〉n +∥ε∥2

n +∥ε∥2
n +2〈ε, f̂ − f0 −ε〉n

= ∥ f − f0∥2
n −2〈 f ,ε〉n +2〈ε, f̂ 〉n .

Combining the above inequalities, taking expectations and using E∥ f − f0∥2
n = E [(f − f0)(X1)2] = R(f , f0),

R̂n(f̂ , f0) = E∥ f̂ − f0∥2
n ≤ R(f , f0)+2E〈ε, f̂ 〉n ,

where we have used that 〈 f ,ε〉n is centered, as E [f (X1)ε1] = E [f (X1)]E [ε1] = 0. To derive (4.17), it suf-
fices to bound E〈ε, f̂ 〉n , that is the expectation of an empirical process. We will bound this classically
by replacing the quantity f̂ by a maximum over a finite set of functions given to us by the entropy
covering. We then conclude using a bound on the maximum in expectation (something sometimes
called a “maximal inequality").

Let j∗ be a random index such that ∥ f̂ − f j ∥∞ ≤ δ. Let us denote, for an integer j ≤Nn ,

ξ j = 1p
n

n∑
i=1

εi (f j − f0)(Xi)

∥ f j − f0∥n
.

This is a centered variable, whose distribution given the Xi ’s is standard normal. By writing

E

[
max

1≤ j≤Nn
ξ2

j

]
= E

[
E

[
max

1≤ j≤Nn
ξ2

j | (Xi)i

]]
,

we see that to bound the first expectation it is enough to bound the conditional expectation on the
right hand side, that is the expectation of the maximum of chi-squared(1) variables, so that using
Lemma 4.14 below, the last display is at most 3logNn +1.

Recalling the definition of j∗ and using the triangle inequality,

∣∣E〈ε, f̂ 〉n
∣∣= ∣∣∣∣∣ 1

n
E

n∑
i=1

εi (f̂ (Xi)− f0(Xi))

∣∣∣∣∣
≤ δE

1

n

n∑
i=1

|εi |+
∣∣∣∣∣ 1

n
E

n∑
i=1

εi (f j∗ (Xi)− f0(Xi))

∣∣∣∣∣
≤ δ+ 1p

n
E

[|ξ j∗ |∥ f j∗ − f0∥n
]

.

One further bounds ∥ f j∗ − f0∥n ≤ ∥ f j∗ − f̂ ∥n +∥ f̂ − f0∥n ≤ δ+∥ f̂ − f0∥n and via Cauchy-Schwarz,

E
[|ξ j∗ |∥ f j∗ − f0∥n

]≤√
2E∥ f̂ − f0∥2

n +2δ2

√
E

[
max

1≤ j≤Nn
ξ2

j

]
≤p

2

[√
R̂(f̂ , f0)+δ

]√
3logNn +1,

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 49

where we have used the property on maxima mentioned above. Deduce

∣∣E〈ε, f̂ 〉n
∣∣≤ δ+p

2

p
4np
n
δ+p

2

√
R̂(f̂ , f0) · 4logNn

n
≤ 5δ+4

√
R̂(f̂ , f0)

logNn

n
,

where we use the assumption 1 ≤ logNn ≤ n. One obtains

R̂(f̂ , f0) ≤ R(f , f0)+4

√
R̂(f̂ , f0)

logNn

n
+5δ.

To conclude, one uses a similar argument as at the end of the proof of (4.16), so that one moves both
R̂(f̂ , f0) terms to the left hand side of the inequality, which concludes the proof of (4.17).

Lemma 4.14. Let ξ1, . . . ,ξN be standard normal variables (but not necessarily independent). Then, for
all N ≥ 1,

E

[
max

1≤ j≤N
ξ2

j

]
≤ 3log N +1.

This is standard (see [SH20a], Lemma C.1, or e.g. [BLM13] Corollary 2.6 for a more general result
for sub-exponential variables); the way to understand it: for Gaussian variables the maximum is of
order at most

√
log N so the squares of N Gaussians have their maximum at most of size (log N).

4.4 Compositional structures: towards solving the curse of dimen-
sionality

Discovering a hidden ‘structure’. The ‘raw’ regression data collected by the statistician takes the form,
in the setting model (4.1), of n vectors of size d +1: the n pairs (X T

i ,Yi) with Xi ∈ [0,1]d and Yi a real,
with the dimension d possibly large (think for instance of e.g. d = 10 or 20). The unknown regression
function f0(x1, . . . , xd) depends on d of variables, and we have seen that if d is larger than a few units
this may lead to a slow uniform convergence rate of the form n−2β/(2β+d) for the prediction risk. It is
often the case though that the problem is effectively of smaller dimension than d . We give a number
of frequently encountered examples

1. f0 in fact depends on just one variable (but we do not know it a priori), for instance

f0(x1, . . . , xd) = g (x1),

for some g : [0,1] → R. In this case it seems reasonable to expect a rate n−2β/(2β+1), since the f0

effectively depends on 1 variable only. More generally, f0 may depend on a small number t ≤ d
of variables, although we do not know a priori which ones, e.g.

f0(x1, . . . , xd) = g (x2, x3, xd),

in which case the effective dimension should be 3, so we expect a rate n−2β/(2β+3).

2. In the preceding example, the function effectively depends on a small number of the original
variables xi , but it could depend on few variables only after transformation of the variables, for
instance

f0(x1, . . . , xd) = g (x1 +x2 +·· ·+xd).

In this case f0(x1, . . . , xd) = g (x ′) only depends on ‘one’ variable x ′ = x1+·· ·+xd , so one expect a
rate n−2β/(2β+1).

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 50

3. Additive models. It may be possible to write f0 in an additive form

f0(x1, . . . , xd) =
d∑

i=1
fi (xi),

for some functions f1, . . . , fd depending on one variable only. If all functions fi are at least β–
Hölder, one expects a rate d ·n−2β/(2β+1) that is n−2β/(2β+1) if d is a fixed constant.

4. Generalised additive models. It may be possible to write f0 in the form

f0(x1, . . . , xd) = h

(
d∑

i=1
fi (xi)

)
,

for some real-valued functions f1, . . . , fd (that are, as before, say all β–Hölder) and an unknown
real ‘link’ function h that is γ–Hölder. One expects the rate to depend onβ,γ, but not (too much)
on the dimension d .

Class of compositions. In all the settings of the previous paragraph, one may note that the original
function f0 can be written as a composition of functions

f0 = gq ◦ · · · ◦ g1 ◦ g0,

for some integer q ≥ 1. For instance, in the case of additive models one can set g0(x1, . . . , xd) =
(f1(x1), . . . , fd (xd)) (note that g0 is then Rd –valued) and g1(y1, . . . , yd) = y1 + ·· · + yd . For each of the
examples in the above list, if one knew beforehand that f0 is in one class of the other, one could cer-
tainly develop a specific estimation method using the special structure at hand. In practice, however,
it would be desirable to have a method that is able to automatically ‘learn the structure’. We are going
to see that this is achieved by deep ReLU estimators.

Let us introduce the class, for d = (d0, . . . ,dq+1), t = (t0, . . . , tq),β= (β0, . . . ,βq),

G (q,d , t ,β,K) =
{

f = gq ◦ · · · ◦ g0 : gi = (gi j) j : [ai ,bi]di → [ai+1,bi+1]di+1 ,

gi j ∈C
βi
ti

([ai ,bi]ti ,K), |ai |, |bi | ≤ K
}

, (4.18)

where we denoted C
βi
ti

for the Hölder ball over ti variables to insist on the fact that these functions
depend on ti variables only (at most). The coefficients ti can be interpreted as the maximal number
of variables each function gi j is allowed to depend on. In particular, this number is always at most
di , but may actually be much smaller. Let us note that the decomposition of f0 as a composition is
typically not unique, but this is not of concern us here because we are interested in estimation of f0

itself only.
Example. In ambient dimension 5, consider the function

f (x1, x2, x3, x4, x5) = h1(h01(x1, x3, x4),h02(x1, x4, x5),h03(x5)).

Then h0 takes as input 5 coordinates (so d0 = 5) and takes its values in R3 (hence d1 = 3) so has
three coordinate functions h01,h0,2,h0,3, which themselves depend on only (at most) 3 variables, so
that here d0 = 3. Since h1 has three coordinates and (in general) depends on each of these, we have
d1 = t1 = 3. Finally, the final output of the regression is always a real number in this chapter so d2 = 1.

Note that for f0 = g1 ◦ g0 with d1 = d0 = t1 = t0 = 1 and β0,β1 ≤ 1, it follows from the definition of

the Hölder class that f0 has regularity β0β1, so that one expects a convergence rate of order n
− β0β1

1+2β0β1 .

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 51

It turns out that the actual (or ‘effective’) regularity depends on whether βi ≤ 1 or not. Let us define
the following new ‘regularity’ parameter

β∗
i =βi

q∏
ℓ=i+1

(βℓ∧1). (4.19)

Convergence result for compositions. Given d , t ,β as before, let us define the rate

ε∗n = max
0≤i≤q

{
n
− β∗i

2β∗
i
+ti

}
. (4.20)

Example. For d0 = d1 = t0 = t1 = q = 1 and f = g1 ◦ g0 with β1,β0 ≤ 1, we have β∗
0 = β0(β1 ∧1) = β0β1

and β∗
1 =β1, and the rate ε∗n equals, since β0β1 ≤β1,

max

(
n
− β1

2β1+1 ,n
− β0β1

2β0β1+1

)
= n

− β0β1
2β0β1+1 ,

which gives the rate announced above for this example. One may check that the formula (4.20) also
gives the expected rate in the other examples above.

Theorem 4.15 (Convergence of ReLU DNNs for compositions). Suppose f0 ∈ G (q,d , t ,β,K) for arbi-
trary β> 0 and K > 0, integer q and vector of integers d , t . Let f̂ = f̂ ReLU be the estimator in (4.5) with
F =F (L, N , s,F) the class of realisations of neural networks with depth L, width vector N = (Nl)1≤l≤L ,
sparsity s and uniform bound F . Suppose F ≥ K ∨1 and a choice of parameters, for ε∗n as in (4.20),

logn ≤ L ≤ nε∗n
2, nε∗n

2 ≤ min
1≤l≤L

Nl ≤ max
1≤l≤L

Nl ≤ n2, s ≍ (logn)
(
nε∗n

2
)

.

Then there exists C =C (q,d , t ,β,F) such that

sup
f0 ∈G (q,d ,t ,β,K)

R(f̂ , f0) ≤C L(logn)2ε∗n
2.

In particular, if L ≍ logn, the maximum risk is bounded by C (logn)3ε∗n
2.

This result as a similar interpretation as Theorem 4.3: for well chosen parameters, the deep ReLU
ERM achieves the rate ε∗n

2 in prediction risk (up to a logarithmic factor). Moreover, this rate is optimal
from the minimax perspective, as the next Theorem shows (under a mild condition on the dimen-
sions). The remarkable point here is that, provided its parameters are well chosen, the deep ReLU
estimator is able to automatically obtain the best possible rate, without being given any informa-
tion beforehand on the underlying type of composition structure. Another setting somewhat different
from compositional classes (but in the same spirit of a ‘hidden structure’) is that of data sitting on
(or near) a geometric object, e.g. a manifold. One can show that deep ReLU ERM estimators again
perform well in such settings, naturally ‘adapting’ to the unknown underlying geometric structure.

Theorem 4.16 (Minimax optimality for compositions). Consider the regression model (4.1), where the
Xi s are drawn from a distribution with density on [0,1]d which is bounded from above and below by
positive constants. For arbitraryβ> 0, integer q and vector of integers d , t , suppose ti ≤ min(d0, . . . ,di−1)
for all i . Then for large enough K ,

inf
f̂

sup
f0 ∈G (q,d ,t ,β,K)

R(f̂ , f0) ≥ cε∗n
2,

where the infimum is taken over all possible estimators f̂ of f in model (4.1).

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 52

Proof of Theorem 4.15. The proof is based again on the two key ingredients viewed in Section 4.2.3.
These, combined with the Lemma below, enable to obtain the result. The proof is then very similar to
that of Theorem 4.3. We sketch the proof now.

One first applies the oracle inequality Theorem 4.6. With the choice of parameters made in the
statement of Theorem 4.15, and using the entropy control as in previous proofs, we directly see that
the complexity term is of the expected order. So it is enough to focus on the approximation term, and
derive an upper bound on the infimum of ∥ f − f0∥∞ where f ranges in the class F .

Step 1 (shift–and–rescale). One rewrites the composition f0 = gq ◦ · · · ◦ g0 as

f0 = hq ◦ · · · ◦h0,

where now the function h0 j ∈ C
β0
t0

([0,1]t0 ,1), for 1 ≤ i ≤ q − 1 we have hi j ∈ C
βi
ti

([0,1]ti , (2K)βi) and

hq j ∈C
βq
tq

([0,1]tq ,K (2K)βq). This follows by shift–and–rescale by setting

h0 = 1

2
+ g0

2K
, hi = 1

2
+ gi (2K ·−K)

2K
, hq = gq (2K ·−K), (4.21)

and checking that the one but last display holds. This is left as an exercise.

Step 2 (relating compositions).

Lemma 4.17. Let hi = (hi j) be functions as in (4.21), with Ki ≥ 1. Then for any functions h̃i = (h̃i j)
with h̃i j : [0, ti] → [0,1], for and C =C (K ,β),

∥hq ◦ · · ·h0 − h̃q ◦ · · · ◦ h̃0∥L∞[0,1]d ≤C
q∑

i=0

{∥∥∣∣hi − h̃i
∣∣∞∥∥

∞
}∏q

ℓ=i+1(βℓ∧1)
.

Remark. Note that hi − h̃i is a vector of functions: for each x one takes the maximum of the coor-
dinates of the vector (hi − h̃i)(x), and then the supremum norm

∥∥∣∣hi − h̃i
∣∣∞∥∥

∞ is over L∞[0,1]di .

Proof of Lemma 4.17. We set
Hi = hi ◦ · · · ◦h0, H̃i = h̃i ◦ · · · ◦ h̃0.

By the triangle inequality, using that hi is Qi –Hölder for Qi as specified above (4.21),

|Hi (x)− H̃i (x)|∞ ≤ |hi ◦Hi−1(x)−hi ◦ H̃i−1(x)|∞+|hi ◦Hi−1(x)− h̃i ◦ H̃i−1(x)|∞
≤Qi |Hi−1 − H̃i−1|βi∧1

∞ +∥|hi − h̃i |∞∥∞.

Now we use this inequality recursively. To do so, first note that (y + z)α ≤ yα+ zα holds for α ∈ (0,1]
and positive y, z (because the difference (y + z)α − yα + zα is decreasing as a function of y). Noting

that all the powers βi ∧1 are smaller than one, so that Qβi∧1
i ≤Qi (using Qi ≥ 1 which follows from the

assumption on Ki), a simple recursion gives, for any 1 ≤ J ≤ q ,

∥h J ◦ · · ·h0 − h̃ J ◦ · · · ◦ h̃0∥L∞[0,1]d ≤
(

J∏
i=1

Qi

)
J∑

i=0

{∥∥∣∣hi − h̃i
∣∣∞∥∥

∞
}∏J

ℓ=i+1(βℓ∧1)
,

which gives the result by taking J = q .

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 53

Step 3. Using Theorem 4.5, one can find functions h̃i j realisations of a ReLU network with m ≍
logn, width of order N and sparsity si ≤C mN with

∥h̃i j −hi j ∥∞ ≲
N

n2 +N
− βi

ti .

One may assume h̃i j takes values in [0,1] (up to applying ReLU and ·∧1, which can be easily built with
ReLU). Next one sets

f ∗ = h̃q ◦ h̃q−1 ◦ · · · ◦ h̃0.

Lemma 4.17 now gives

∥ f ∗− f0∥∞ ≲
q∑

i=0

(
N

− βi
ti

)∏q
ℓ=i+1(βℓ∧1)

≲ max
0≤i≤q

N
− β∗i

ti ≲ ε∗n ,

as long as we set N := ⌈c max0≤i≤q n
ti

2β∗
i
+ti ⌉ for c > 0 a small constant. To conclude, it is enough to

update slightly f ∗ so that it takes values in [−F,F] as requested. This is done through a simple shift–
and–rescale argument and left to the reader.

Proof of Theorem 4.16. We give the main idea of the proof in a simplified setting and briefly explain at
the end how this extends to the general case.

Suppose that instead of the prediction loss, we want to prove the result in terms of the squared
pointwise loss at x = 0, namely ℓ(f , g) = | f (0)− g (0)|2. We use Le Cam’s two points argument (see
a nonparametric statistics course): if one can find two functions f00 and f01 that both belong to the
Hölder class over which the supremum is taken in the Theorem, that verify, for a small constant c > 0
(e.g. c = 1/4),

| f01(0)− f00(0)|2 ≳ ε∗n
2

KL(P f00 ,P f01)≲ c,

then the minimax rate in pointwise loss over the considered class of functions is bounded from below
by a constant times (ε∗n)2.

Suppose for simplicity that all dimensions involved ti = di are equal to 1 and that the design points
Xi are uniform over [0,1]. The latter implies for any f , g ,

K L(P f ,Pg) = nE [(f (X1)− g (X1))2] = n∥ f − g∥2
2.

Further define i∗ = argmin i=0,...,q β
∗
i /(2β∗

i + 1) as an index for which the estimation rate as in the
statement of the Theorem is obtained.

Let us set gℓ(x) = x for ℓ< i∗, gℓ(x) = x1∧βℓ for ℓ> i∗ and gi∗ (x) to be chosen below, and

f0(x) = gq ◦ · · · ◦ g1 ◦ g0(x) = (
gi∗ (x)

)∏q
ℓ=i∗+1

βℓ∧1 . (4.22)

Consider a smooth kernel function K and set g̃ (x) = hβi∗ K (x/h). Under standard assumptions on the
kernel, g̃ is βi∗–Hölder. Now define two functions f01, f00, that are of the type of f0 in (4.22), with
respectively gi∗ (x) = 0 and gi∗ (x) = g̃ (x), that is

f00(x) = 0, f01(x) =
(
hβi∗ K (x/h)

)∏q
ℓ=i∗+1

βℓ∧1
.

Assuming K (0) > 0 one gets | f00(0)− f01(0)|≳ hβ
∗
i∗ . Then evaluating the L2–distance between f00(0)

and f01 and using the previous identity for the KL divergence under Gaussian errors gives KL(P f00 ,P f01)≲

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 54

nh2β∗
i∗+1, which is a small positive constant if one choses h ≍ n

1
2β∗

i∗+1 . Using the two-points lower
bound scheme as mentioned above, one obtains the result for the squared pointwise loss.

For the prediction loss, the proof uses the same ideas, but the technique is slightly different: one
uses (for instance) a ‘many hypotheses’ lower bound technique (again, see a nonparametric statistics
course). One then replaces the perturbation constructed above around point x = 0 by ‘many’ pertur-
bations around different points of [0,1]. The number of perturbations is controlled using Varshamov–
Gilbert’s lemma. This part of the proof is analogous to the proof of the minimax lower bound in one
dimension in terms of the L2–risk, so details are omitted.

4.5 Minimax optimality and link to approximability

We conclude this chapter by asking a few questions the attentive reader may have already at the light
of the results of the present and previous chapters

a) the upper-bound results we have obtained so far for regression consider ReLU DNNs with a
logarithmic depth L ≍ logn. On the other hand, results in Chapter 2 indicate that there exist
deep networks that admit faster approximation properties in terms of the sparsity s, at the cost
of chosing discontinuous weight functions. Can one make a link between both types of results?

b) from the remark in the previous point it is tempting to think that, since there exist faster ap-
proximation rates, it is perhaps possible to improve upon the convergence rates for deep ReLU
estimators by taking a possibly different architecture in the network (e.g. by taking a deeper but
thinner network). On the other hand, Theorem 4.16 provides a minimax lower bound, which
matches the already obtained upper-bounds with ReLU networks of logarithmic depths (up to
log terms)...

c) more generally, is there a link between approximability results – say of the type that given a
network with some architecture, one cannot do better than a certain rate depending of the pa-
rameters of the architecture to approximate (say) Hölder functions – and minimax-type results
– which assert that the estimation rate for estimating Hölder functions cannot be better than
the minimax rate–?

To give a (partial) answer to a)–b) above, let us for simplicity restrict to a class of bounded and
Lipschitz functions. Then one may use neural networks with the architecture considered in Chapter
2, Theorem 2.7.

Lemma 4.18 (estimating Lispchitz functions with polynomial depth). Suppose the true unknown f0 ∈
C 1([0,1]d ,K) for some K > 0. Let f̂ = f̂ ReLU be the estimator in (4.5) with F = F (L, N , s,F). Suppose
F ≥ K ∨1 and a choice of parameters as follows, for β= 1,

L ≍
(

n

logn

) d
2β+d

, min
1≤l≤L

Nl ≍ max
1≤l≤L

Nl ≍ 1,

so that, in particular, s ≍ L. Then there exists C =C (d ,F) such that

sup
f0 ∈C 1([0,1]d ,K)

R(f̂ , f0) ≤C

(
logn

n

) 2β
2β+d

.

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 55

As is apparent from the proof of the Lemma below, even though for very deep ReLU–networks with
constant width the approximation of Lipschitz functions is faster than for architectures with logarith-
mic depth and polynomial (in n) width, the global estimation rate is not significantly faster (there is a
slight improvement in the logarithmic factor). This is of course expected, as one cannot go (uniformly)
below the minimax rate! What happens is that the ‘complexity’ term arising in the study of f̂ = f̂ ReLU

(the oracle inequality part) is much larger for the former architecture.

Proof. The oracle inequality Theorem 4.6 gives, for δ= 1/n,

R(f̂ , f0) = E
[
(f̂ (T)− f0(T))2]≲ inf

f ∈F
∥ f − f0∥2

∞+ logN (n−1,F ,∥ ·∥∞)

n
.

Now combining with Theorem 2.7 and Lemma 4.13 to control the entropy term one obtains

R(f̂ , f0)≲ s−
4
d + s log(2LV 2n)

n
≲ s−

4
d + sL logn

n
,

recalling that V ≤ (2n2)L . Since s ≍ L, one can write s2 ≍ sL an write the previous upper bounds in
terms of the quantity sL only as

R(f̂ , f0)≲ (sL)−
2
d + (sL) logn

n
≲

(
logn

n

) 2
2+d

,

using as usual that x → x−2/d + an x is minimal for x such that two terms in the sum are of the same
order, that is x1+2/d ≍ an , which gives the announced result.

Theorem 4.19. Let β,K > 0 and d ≥ 1 an integer. There exists a constant c1 > 0 such that for s ∧L ≥ c1,

sup
f0 ∈C β([0,1]d ,K)

inf
f ∈F (L,N ,s)

∥ f − f0∥∞ ≳
(

log−1(sL)

sL

) β
d

.

Theorem 4.19 asserts that given a network architecture with depth L and sparsity s, one cannot
achieve better than the rate (sL)−β/d to approximate β–Hölder functions in dimension d (up to a log
term). As its proof reveals, it is a fairly direct consequence of combining the minimax lower bound in
Theorem 4.16 in the simple case where q = 1 (i.e. the usual nonparametric rate forβ–Hölder functions
in dimension d) with the oracle inequality Theorem 4.6.

This result extends Proposition 2.6, which applies to Lipschitz functions, to any smoothness level
β> 0. Results in this Chapter show that the lower bound of Theorem 4.19 is attained (up to log factors)
for ReLU networks of logarithmic depth, as then sL ≍ s(logn) ≍ (logn)nd/(2β+d) and it suffices to apply
Theorem 4.5. Results in Chapter 2 show that for β = 1 the lower bound of Theorem 4.19 is attained
(up to log factors) for ReLU networks of depth polynomial in n and of constant width, as then sL ≍ s2,
which gives the quadratic dependence in s observed in Chapter 2.

Proof. For simplicity let us denote C =C β([0,1]d ,K) and F =F (L, N , s). The oracle inequality Theo-
rem 4.6 gives, taking the supremum over f0s, and bounding the prediction risk in terms of the supre-
mum norm, for n a large enough integer,

sup
f0∈C

R(f̂ , f0)≲ sup
f0∈C

inf
f ∈F

∥ f − f0∥2
∞+ logN (n−1,F ,∥ ·∥∞)

n

≲ sup
f0∈C

inf
f ∈F

∥ f − f0∥2
∞+ sL log(sn)

n
,

CHAPTER 4. REGRESSION WITH NEURAL NETWORKS 56

where we have used the entropy bound as in previous proofs. On the other hand, the maximum risk
in the previous display can itself be bounded from below by

sup
f0∈C

R(f̂ , f0) ≥ inf
f̃

sup
f0∈C

R(f̃ , f0)≳ n− 2β
2β+d .

Putting together the two previous bounds leads to

sup
f0∈C

inf
f ∈F

∥ f − f0∥2
∞+ sL log(sn)

n
≳ n− 2β

2β+d .

Now let us optimise with respect to the integer n, recalling that the above holds for any n large enough.

The term n− 2β
2β+d is larger than a large enough constant times sL log(sn)/n if n

d
2β+d ≍ sL log(sn). For

such n one has sL log(sn) ≍ sL log(sL). Since then n− 2β
2β+d ≍ (sL log(sL))−2β/d the result follows.

To conclude this chapter, we note that yet another question is that of the necessity (or not) of spar-
sity in the neural network’s architecture. Indeed, in the previous results the sparsity s of the network
(i.e. the number of its active parameters) is always of much smaller order compared to the total num-
ber of parameters. For instance, in the setting of Corollary 4.4, the total number of parameters in the
fitted network is of order L×n2 (depth times maximum width squared, since we have matrices of coef-
ficients in the linear operation), which is much larger than the required sparsity (logn)n1/(2β+1). This
means that many weights in the ReLU network providing good approximation for this result need to
be set to 0.

One may wonder whether it is necessary to have many zeroes or if instead a fairly dense network
would work (the advantage is that then we do not have to ask which coefficients to put to 0). Recent
work (in particular by Kohler and Langer (2021)) shows that sparsity is not necessary and that one can
achieve similar results as those above with dense networks.

BIBLIOGRAPHY 57

Bibliography

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities. Oxford
University Press, Oxford, 2013. A nonasymptotic theory of independence, With a foreword
by Michel Ledoux.

[SH20a] Johannes Schmidt-Hieber. Appendix to “nonparametric regression using deep neural net-
works with relu activation function". The Annals of Statistics, 2020.

[SH20b] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu
activation function. The Annals of Statistics, 48(4):1875–1897, 2020.

	Regression with neural networks
	The model
	Near-optimal estimation rates with ReLU–DNNs
	Deep ReLU estimator
	Global convergence rate for Hölder functions
	Key ideas

	Proof of the global rate theorem
	Ingredient 1: smooth approximation with deep ReLU networks
	Ingredient 2 : entropy and error propagation in DNNs
	A generic oracle inequality for the prediction risk

	Compositional structures: towards solving the curse of dimensionality
	Minimax optimality and link to approximability

